spmenu documentation 0.4.1

Code documentation
Position and width/height variables
Drawable abstraction functions
Font abstraction functions
Colorscheme abstraction functions
Cursor abstraction functions
Drawable context functions
Drawing functions
Map functions
Removed functions

Code documentation

Some of spmenu’s code documented. If you want to hack on the
project, this should be useful. Note that these may be renamed in the
future to make the codebase easier to understand and make changes
to. Also note that this is definitely not a complete list.

Position and width/height variables

* bh
o Menu height divided by lines gets you bh. The name comes from
dwm’s bh meaning ‘bar height’. This is the height of each item in
the list.
* mh
o Menu height (or height of the window)
o Use drw_resize() and XResizeWindow() to adjust this.
* mw
o Menu width (or width of the window)
o Use drw_resize() and XResizeWindow() to adjust this.
o2 * borderwidth is removed from mw (2* because we have two
sides)



02 * spisremoved from mw (2* because we have two sides)

o X position, functions like drw_text use this.
o If you set this in bar drawing functions, you must apply the
same to buttonpress (), otherwise clicks will be offset.
'y
o Y position, functions like drw_text use this.
o If you set this in bar drawing functions, you must apply the
same to buttonpress (), otherwise clicks will be offset.
®ev->X
o X position where you clicked. This is used in the buttonpress()
function to check where you clicked.
*ev->y
o Y position where you clicked. This is used in the buttonpress()
function to check where you clicked.
*w
o Width of something, this is passed to drw_text () for example,
but you may override this.
* plw
o This is the width of the powerline arrow. It must be added on in
the buttonpress() and draw functions.
vp
o Vertical padding, this is initially added on in the
create_window() function.
. sp
o Horizontal padding, this is initially added on in the
create_window() function.
* promptw
o Width of the prompt text, this is going to be the same as
TEXTW(prompt).
* inputw
o Width of the input text.
* fh
o Font height. Used to calculate the height of the cursor. See
drawcaret ().
* menuposition
o Integer the user is meant to configure. If it’s set to @, spmenu
will be put on the bottom of the screen. If it’s set to 1 it will be
put on the top of the screen. If it’s 2 it will be put in the center of
the screen.
* wa.width
o Window width, wa iS XWindowAttributes.
* wa.height
o Window height, wa is XWindowAttributes.



* imageheight
o Image height, This is not the height of the image, it is the height
that the image will be scaled to fit.
* imagewidth
o Image width, This is not the width of the image, it is the width
that the image will be scaled to fit.
* imagegaps
o Image gaps, this is extra space added around the image.
* imageh
o Usually the same as imageheight. This is what imageheight is
initially set to.
* imagew
o Usually the same as imagewidth. This is what imagewidth is
initially set to.
* imageg
o Usually the same as imagegaps. This is what imagegaps is initially
set to.
* longestedge
o As the name implies, it is the longest (highest value) of
imageheight and imagewidth.
* numberWidth
o Integer set in some functions, it is simply TEXTW(numbers) if the
match count isn’t hidden.
* modeWidth
o Integer set in some functions, it is simply TEXTW(modetext) if the
mode indicator isn’t hidden.
* larrowWidth
o Integer set in some functions, it is simply TEXTW(1leftarrow) if
the left arrow isn’t hidden.
* rarrowWidth
o Integer set in some functions, it is simply TEXTW(rightarrow) if
the right arrow isn’t hidden.
* powerlinewidth
o Integer set in some functions, it is simply plw / 2 if powerlines
are enabled.
* Curpos
o Cursor/caret position. When text is added to the input, the
width of that text is added to this.



Drawable abstraction functions

Most of these are in 1ibs/sl/draw.c and libs/s1l/draw.h.

* drw_create(Display *dpy, int screen, Window win, unsigned int
w, unsigned int h, Visual *visual, unsigned int depth, Colormap
cmap) ;

o This function creates a drawable from Display *dpy, Drw. Think
of it as a canvas.

* drw_resize(Drw *drw, unsigned int w, unsigned int h)

o This function resizes the drawable to the dimensions passed as
arguments (w, h).

e drw_free(Dxrw *drw);

o This function will free the drawable from memory. It is usually
called in cleanup functions like cleanup() so most of the time
you don’t need to use this.

Font abstraction functions

Most of these are in 1ibs/sl/draw.c and libs/s1l/draw.h. NOTE: These
will differ slightly depending on if Pango is enabled or not.

e drw_font_create(Drw* drw, char *font[], size_t fontcount);

o This function will return a font libXft can use.

e drw_font_free(Fnt *set);

o This function will free the font from memory.

* drw_fontset_getwidth_clamp(Drw *drw, const char *text, unsigned
int n, Bool markup);

o This function returns the smallest value out of the passed
argument n and the length of the text drawn. The text is not
actually drawn though.

* drw_font_getwidth(Drw *drw, const char *text, Bool markup);

o This function returns the width of drawn text. The text is not
actually drawn though.

* drw_font_getexts(Fnt *font, const char *text, unsigned int len,
unsigned int *w, unsigned int *h, Bool markup);

o This function returns the length of the text with the used font.



Colorscheme abstraction functions

*drw_clr create(Drw *drw, Clr *dest, char *clrname, unsigned int
alpha);
o This function allocates space for a color.
* drw_scm_create(Drw *drw, char *clrnames[], unsigned int
alphas[], size_t clrcount);
o This function returns a color scheme from an array of colors
and alpha.

Cursor abstraction functions

* drw_cur_create(Drw *drw, int shape);
o This function creates and returns a cursor.
e drw_cur_free(Drw *drw, Cur *cursor);
o This function will free the cursor from memory.

Drawable context functions

e drw_setscheme(Drw *drw, Clr *scm);
o Sets the color scheme to *scm created by drw_scm_create()

Drawing functions

* drw_rect(Drw *drw, int x, int y, unsigned int w, unsigned int
h, int filled , int invert);

o Draws a simple rectangle. Used in other functions to create
more useful shapes, such as a cursor.

* drw_text(Drw *drw, int x, int y, unsigned int w, unsigned int
h, unsigned int lpad, const char *text, int invert, Bool
markup) ;

o Draws text on the drawable using the font created. const char
*text contains the text itself.

Map functions

* drw_map(Drw *drw, Window win, int x, int y, unsigned int w,
unsigned int h);
o Maps the drawable. (makes it visible)



Removed functions

Various functions that have been removed for some reason.

e drw_setfont (Drw *drw, Fnt *set);
o Sets the font.
o NOTE: Applies only if Pango is disabled.



	spmenu documentation 0.4.1
	Code documentation
	Position and width/height variables
	Drawable abstraction functions
	Font abstraction functions
	Colorscheme abstraction functions
	Cursor abstraction functions
	Drawable context functions
	Drawing functions
	Map functions
	Removed functions


