Move some stuff around, add flextile-deluxe

This commit is contained in:
speedie 2023-07-04 02:31:38 +02:00
parent 01da718e5a
commit 1aa89de6cd
26 changed files with 1146 additions and 58 deletions

View file

@ -55,14 +55,28 @@ static const BarRule barrules[] = {
/* layout(s) */ /* layout(s) */
static const float mfact = 0.55; /* factor of master area size [0.05..0.95] */ static const float mfact = 0.55; /* factor of master area size [0.05..0.95] */
static const int nmaster = 1; /* number of clients in master area */ static const int nmaster = 1; /* number of clients in master area */
static const int nstack = 0; /* number of clients in primary stack area */
static const int resizehints = 1; /* 1 means respect size hints in tiled resizals */ static const int resizehints = 1; /* 1 means respect size hints in tiled resizals */
static const int lockfullscreen = 1; /* 1 will force focus on the fullscreen window */ static const int lockfullscreen = 1; /* 1 will force focus on the fullscreen window */
static const Layout layouts[] = { static const Layout layouts[] = {
/* symbol arrange function */ /* symbol arrange function, { nmaster, nstack, layout, master axis, stack axis, secondary stack axis } */
{ "[]=", tile }, /* first entry is default */ { "[]=", flextile, { -1, -1, SPLIT_VERTICAL, TOP_TO_BOTTOM, TOP_TO_BOTTOM, 0, NULL } }, // default tile layout
{ "><>", NULL }, /* no layout function means floating behavior */ { "><>", NULL, {0} }, /* no layout function means floating behavior */
{ "[M]", monocle }, { "[M]", flextile, { -1, -1, NO_SPLIT, MONOCLE, MONOCLE, 0, NULL } }, // monocle
{ "|||", flextile, { -1, -1, SPLIT_VERTICAL, LEFT_TO_RIGHT, TOP_TO_BOTTOM, 0, NULL } }, // columns (col) layout
{ ">M>", flextile, { -1, -1, FLOATING_MASTER, LEFT_TO_RIGHT, LEFT_TO_RIGHT, 0, NULL } }, // floating master
{ "[D]", flextile, { -1, -1, SPLIT_VERTICAL, TOP_TO_BOTTOM, MONOCLE, 0, NULL } }, // deck
{ "TTT", flextile, { -1, -1, SPLIT_HORIZONTAL, LEFT_TO_RIGHT, LEFT_TO_RIGHT, 0, NULL } }, // bstack
{ "===", flextile, { -1, -1, SPLIT_HORIZONTAL, LEFT_TO_RIGHT, TOP_TO_BOTTOM, 0, NULL } }, // bstackhoriz
{ "|M|", flextile, { -1, -1, SPLIT_HORIZONTAL, LEFT_TO_RIGHT, TOP_TO_BOTTOM, 0, monoclesymbols } }, // centeredmaster
{ ":::", flextile, { -1, -1, NO_SPLIT, GAPPLESSGRID, GAPPLESSGRID, 0, NULL } }, // gappless grid
{ "[\\]", flextile, { -1, -1, NO_SPLIT, DWINDLE, DWINDLE, 0, NULL } }, // fibonacci dwindle
{ "(@)", flextile, { -1, -1, NO_SPLIT, SPIRAL, SPIRAL, 0, NULL } }, // fibonacci spiral
{ "[T]", flextile, { -1, -1, SPLIT_VERTICAL, LEFT_TO_RIGHT, TATAMI, 0, NULL } }, // tatami mats
#if CYCLELAYOUTS_PATCH
{ NULL, NULL, {0} },
#endif
}; };
/* key definitions */ /* key definitions */
@ -90,6 +104,8 @@ static const Key keys[] = {
{ MODKEY, XK_k, focusstack, {.i = -1 } }, { MODKEY, XK_k, focusstack, {.i = -1 } },
{ MODKEY, XK_i, incnmaster, {.i = +1 } }, { MODKEY, XK_i, incnmaster, {.i = +1 } },
{ MODKEY, XK_d, incnmaster, {.i = -1 } }, { MODKEY, XK_d, incnmaster, {.i = -1 } },
{ MODKEY|ControlMask, XK_i, incnstack, {.i = +1 } },
{ MODKEY|ControlMask, XK_u, incnstack, {.i = -1 } },
{ MODKEY, XK_h, setmfact, {.f = -0.05} }, { MODKEY, XK_h, setmfact, {.f = -0.05} },
{ MODKEY, XK_l, setmfact, {.f = +0.05} }, { MODKEY, XK_l, setmfact, {.f = +0.05} },
{ MODKEY, XK_Return, zoom, {0} }, { MODKEY, XK_Return, zoom, {0} },
@ -99,6 +115,15 @@ static const Key keys[] = {
{ MODKEY, XK_t, setlayout, {.v = &layouts[0]} }, { MODKEY, XK_t, setlayout, {.v = &layouts[0]} },
{ MODKEY, XK_f, setlayout, {.v = &layouts[1]} }, { MODKEY, XK_f, setlayout, {.v = &layouts[1]} },
{ MODKEY, XK_m, setlayout, {.v = &layouts[2]} }, { MODKEY, XK_m, setlayout, {.v = &layouts[2]} },
{ MODKEY|ControlMask, XK_w, rotatelayoutaxis, {.i = +1 } }, /* flextile, 1 = layout axis */
{ MODKEY|ControlMask, XK_e, rotatelayoutaxis, {.i = +2 } }, /* flextile, 2 = master axis */
{ MODKEY|ControlMask, XK_r, rotatelayoutaxis, {.i = +3 } }, /* flextile, 3 = stack axis */
{ MODKEY|ControlMask, XK_t, rotatelayoutaxis, {.i = +4 } }, /* flextile, 4 = secondary stack axis */
{ MODKEY|ControlMask|ShiftMask, XK_w, rotatelayoutaxis, {.i = -1 } }, /* flextile, 1 = layout axis */
{ MODKEY|ControlMask|ShiftMask, XK_e, rotatelayoutaxis, {.i = -2 } }, /* flextile, 2 = master axis */
{ MODKEY|ControlMask|ShiftMask, XK_r, rotatelayoutaxis, {.i = -3 } }, /* flextile, 3 = stack axis */
{ MODKEY|ControlMask|ShiftMask, XK_t, rotatelayoutaxis, {.i = -4 } }, /* flextile, 4 = secondary stack axis */
{ MODKEY|ControlMask, XK_Return, mirrorlayout, {0} }, /* flextile, flip master and stack areas */
{ MODKEY, XK_space, setlayout, {0} }, { MODKEY, XK_space, setlayout, {0} },
{ MODKEY|ShiftMask, XK_space, togglefloating, {0} }, { MODKEY|ShiftMask, XK_space, togglefloating, {0} },
{ MODKEY, XK_0, view, {.ui = ~0 } }, { MODKEY, XK_0, view, {.ui = ~0 } },

194
dwm.c
View file

@ -161,14 +161,28 @@ typedef struct {
const Arg arg; const Arg arg;
} Key; } Key;
typedef struct {
int nmaster;
int nstack;
int layout;
int masteraxis; // master stack area
int stack1axis; // primary stack area
int stack2axis; // secondary stack area, e.g. centered master
void (*symbolfunc)(Monitor *, unsigned int);
} LayoutPreset;
typedef struct { typedef struct {
const char *symbol; const char *symbol;
void (*arrange)(Monitor *); void (*arrange)(Monitor *);
LayoutPreset preset;
} Layout; } Layout;
typedef struct Pertag Pertag;
struct Monitor { struct Monitor {
char ltsymbol[16]; char ltsymbol[16];
float mfact; float mfact;
int ltaxis[4];
int nstack;
int nmaster; int nmaster;
int num; int num;
int mx, my, mw, mh; /* screen size */ int mx, my, mw, mh; /* screen size */
@ -183,6 +197,7 @@ struct Monitor {
Monitor *next; Monitor *next;
Bar *bar; Bar *bar;
const Layout *lt[2]; const Layout *lt[2];
Pertag *pertag;
}; };
typedef struct { typedef struct {
@ -236,7 +251,6 @@ static void killclient(const Arg *arg);
static void manage(Window w, XWindowAttributes *wa); static void manage(Window w, XWindowAttributes *wa);
static void mappingnotify(XEvent *e); static void mappingnotify(XEvent *e);
static void maprequest(XEvent *e); static void maprequest(XEvent *e);
static void monocle(Monitor *m);
static void motionnotify(XEvent *e); static void motionnotify(XEvent *e);
static void movemouse(const Arg *arg); static void movemouse(const Arg *arg);
static Client *nexttiled(Client *c); static Client *nexttiled(Client *c);
@ -263,7 +277,6 @@ static void showhide(Client *c);
static void spawn(const Arg *arg); static void spawn(const Arg *arg);
static void tag(const Arg *arg); static void tag(const Arg *arg);
static void tagmon(const Arg *arg); static void tagmon(const Arg *arg);
static void tile(Monitor *m);
static void togglebar(const Arg *arg); static void togglebar(const Arg *arg);
static void togglefloating(const Arg *arg); static void togglefloating(const Arg *arg);
static void toggletag(const Arg *arg); static void toggletag(const Arg *arg);
@ -290,7 +303,9 @@ static int xerrordummy(Display *dpy, XErrorEvent *ee);
static int xerrorstart(Display *dpy, XErrorEvent *ee); static int xerrorstart(Display *dpy, XErrorEvent *ee);
static void zoom(const Arg *arg); static void zoom(const Arg *arg);
#include "bar/include.h" #include "libs/bar/include.h"
#include "libs/lt/tile.h"
/* variables */ /* variables */
static const char broken[] = "broken"; static const char broken[] = "broken";
static char stext[1024]; static char stext[1024];
@ -337,7 +352,21 @@ static Colormap cmap;
static char *fonts[] = { font }; static char *fonts[] = { font };
#include "bar/include.c" #include "libs/bar/include.c"
struct Pertag {
unsigned int curtag, prevtag; /* current and previous tag */
int nmasters[LENGTH(tags) + 1]; /* number of windows in master area */
float mfacts[LENGTH(tags) + 1]; /* mfacts per tag */
unsigned int sellts[LENGTH(tags) + 1]; /* selected layouts */
int nstacks[LENGTH(tags) + 1]; /* number of windows in primary stack area */
int ltaxis[LENGTH(tags) + 1][LTAXIS_LAST];
const Layout *ltidxs[LENGTH(tags) + 1][3]; /* matrix of tags and layouts indexes */
Bool showbars[LENGTH(tags) + 1]; /* display bar for the current tag */
Client *prevzooms[LENGTH(tags) + 1]; /* store zoom information */
};
#include "libs/lt/tile.c"
/* compile-time check if all tags fit into an unsigned int bit array. */ /* compile-time check if all tags fit into an unsigned int bit array. */
struct NumTags { char limitexceeded[LENGTH(tags) > 31 ? -1 : 1]; }; struct NumTags { char limitexceeded[LENGTH(tags) > 31 ? -1 : 1]; };
@ -603,6 +632,7 @@ cleanupmon(Monitor *mon)
for (bar = mon->bar; bar; bar = mon->bar) { for (bar = mon->bar; bar; bar = mon->bar) {
XUnmapWindow(dpy, bar->win); XUnmapWindow(dpy, bar->win);
XDestroyWindow(dpy, bar->win); XDestroyWindow(dpy, bar->win);
free(mon->pertag);
mon->bar = bar->next; mon->bar = bar->next;
free(bar); free(bar);
} }
@ -798,6 +828,7 @@ createmon(void)
m->tagset[0] = m->tagset[1] = 1; m->tagset[0] = m->tagset[1] = 1;
m->mfact = mfact; m->mfact = mfact;
m->nmaster = nmaster; m->nmaster = nmaster;
m->nstack = nstack;
m->showbar = showbar; m->showbar = showbar;
for (mi = 0, mon = mons; mon; mon = mon->next, mi++); // monitor index for (mi = 0, mon = mons; mon; mon = mon->next, mi++); // monitor index
@ -805,6 +836,37 @@ createmon(void)
m->lt[1] = &layouts[1 % LENGTH(layouts)]; m->lt[1] = &layouts[1 % LENGTH(layouts)];
strncpy(m->ltsymbol, layouts[0].symbol, sizeof m->ltsymbol); strncpy(m->ltsymbol, layouts[0].symbol, sizeof m->ltsymbol);
m->ltaxis[LAYOUT] = m->lt[0]->preset.layout;
m->ltaxis[MASTER] = m->lt[0]->preset.masteraxis;
m->ltaxis[STACK] = m->lt[0]->preset.stack1axis;
m->ltaxis[STACK2] = m->lt[0]->preset.stack2axis;
if (!(m->pertag = (Pertag *)calloc(1, sizeof(Pertag))))
die("fatal: could not malloc() %u bytes\n", sizeof(Pertag));
m->pertag->curtag = m->pertag->prevtag = 1;
for (i = 0; i <= LENGTH(tags); i++) {
/* init nmaster */
m->pertag->nmasters[i] = m->nmaster;
m->pertag->nstacks[i] = m->nstack;
/* init mfacts */
m->pertag->mfacts[i] = m->mfact;
/* init layouts */
m->pertag->ltidxs[i][0] = m->lt[0];
m->pertag->ltidxs[i][1] = m->lt[1];
m->pertag->sellts[i] = m->sellt;
m->pertag->ltaxis[i][LAYOUT] = m->ltaxis[LAYOUT];
m->pertag->ltaxis[i][MASTER] = m->ltaxis[MASTER];
m->pertag->ltaxis[i][STACK] = m->ltaxis[STACK];
m->pertag->ltaxis[i][STACK2] = m->ltaxis[STACK2];
/* init showbar */
m->pertag->showbars[i] = m->showbar;
}
/* Derive the number of bars for this monitor based on bar rules */ /* Derive the number of bars for this monitor based on bar rules */
for (n = -1, i = 0; i < LENGTH(barrules); i++) { for (n = -1, i = 0; i < LENGTH(barrules); i++) {
br = &barrules[i]; br = &barrules[i];
@ -889,6 +951,7 @@ void
drawbars(void) drawbars(void)
{ {
Monitor *m; Monitor *m;
int i;
for (m = mons; m; m = m->next) for (m = mons; m; m = m->next)
drawbar(m); drawbar(m);
@ -1249,7 +1312,7 @@ grabkeys(void)
void void
incnmaster(const Arg *arg) incnmaster(const Arg *arg)
{ {
selmon->nmaster = MAX(selmon->nmaster + arg->i, 0); selmon->nmaster = selmon->pertag->nmasters[selmon->pertag->curtag] = MAX(selmon->nmaster + arg->i, 0);
arrange(selmon); arrange(selmon);
} }
@ -1405,21 +1468,6 @@ maprequest(XEvent *e)
manage(ev->window, &wa); manage(ev->window, &wa);
} }
void
monocle(Monitor *m)
{
unsigned int n = 0;
Client *c;
for (c = m->clients; c; c = c->next)
if (ISVISIBLE(c))
n++;
if (n > 0) /* override layout symbol */
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[%d]", n);
for (c = nexttiled(m->clients); c; c = nexttiled(c->next))
resize(c, m->wx, m->wy, m->ww - 2 * c->bw, m->wh - 2 * c->bw, 0);
}
void void
motionnotify(XEvent *e) motionnotify(XEvent *e)
{ {
@ -1826,10 +1874,29 @@ setfullscreen(Client *c, int fullscreen)
void void
setlayout(const Arg *arg) setlayout(const Arg *arg)
{ {
if (!arg || !arg->v || arg->v != selmon->lt[selmon->sellt]) if (!arg || !arg->v || arg->v != selmon->lt[selmon->sellt]) {
selmon->sellt ^= 1; selmon->pertag->sellts[selmon->pertag->curtag] ^= 1;
selmon->sellt = selmon->pertag->sellts[selmon->pertag->curtag];
}
if (arg && arg->v) if (arg && arg->v)
selmon->lt[selmon->sellt] = (Layout *)arg->v; selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt] = (Layout *)arg->v;
selmon->lt[selmon->sellt] = selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt];
if (selmon->lt[selmon->sellt]->preset.nmaster && selmon->lt[selmon->sellt]->preset.nmaster != -1)
selmon->nmaster = selmon->lt[selmon->sellt]->preset.nmaster;
if (selmon->lt[selmon->sellt]->preset.nstack && selmon->lt[selmon->sellt]->preset.nstack != -1)
selmon->nstack = selmon->lt[selmon->sellt]->preset.nstack;
selmon->ltaxis[LAYOUT] = selmon->lt[selmon->sellt]->preset.layout;
selmon->ltaxis[MASTER] = selmon->lt[selmon->sellt]->preset.masteraxis;
selmon->ltaxis[STACK] = selmon->lt[selmon->sellt]->preset.stack1axis;
selmon->ltaxis[STACK2] = selmon->lt[selmon->sellt]->preset.stack2axis;
selmon->pertag->ltaxis[selmon->pertag->curtag][LAYOUT] = selmon->ltaxis[LAYOUT];
selmon->pertag->ltaxis[selmon->pertag->curtag][MASTER] = selmon->ltaxis[MASTER];
selmon->pertag->ltaxis[selmon->pertag->curtag][STACK] = selmon->ltaxis[STACK];
selmon->pertag->ltaxis[selmon->pertag->curtag][STACK2] = selmon->ltaxis[STACK2];
strncpy(selmon->ltsymbol, selmon->lt[selmon->sellt]->symbol, sizeof selmon->ltsymbol); strncpy(selmon->ltsymbol, selmon->lt[selmon->sellt]->symbol, sizeof selmon->ltsymbol);
if (selmon->sel) if (selmon->sel)
arrange(selmon); arrange(selmon);
@ -1848,7 +1915,7 @@ setmfact(const Arg *arg)
f = arg->f < 1.0 ? arg->f + selmon->mfact : arg->f - 1.0; f = arg->f < 1.0 ? arg->f + selmon->mfact : arg->f - 1.0;
if (f < 0.05 || f > 0.95) if (f < 0.05 || f > 0.95)
return; return;
selmon->mfact = f; selmon->mfact = selmon->pertag->mfacts[selmon->pertag->curtag] = f;
arrange(selmon); arrange(selmon);
} }
@ -2005,39 +2072,11 @@ tagmon(const Arg *arg)
sendmon(selmon->sel, dirtomon(arg->i)); sendmon(selmon->sel, dirtomon(arg->i));
} }
void
tile(Monitor *m)
{
unsigned int i, n, h, mw, my, ty;
Client *c;
for (n = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), n++);
if (n == 0)
return;
if (n > m->nmaster)
mw = m->nmaster ? m->ww * m->mfact : 0;
else
mw = m->ww;
for (i = my = ty = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++)
if (i < m->nmaster) {
h = (m->wh - my) / (MIN(n, m->nmaster) - i);
resize(c, m->wx, m->wy + my, mw - (2*c->bw), h - (2*c->bw), 0);
if (my + HEIGHT(c) < m->wh)
my += HEIGHT(c);
} else {
h = (m->wh - ty) / (n - i);
resize(c, m->wx + mw, m->wy + ty, m->ww - mw - (2*c->bw), h - (2*c->bw), 0);
if (ty + HEIGHT(c) < m->wh)
ty += HEIGHT(c);
}
}
void void
togglebar(const Arg *arg) togglebar(const Arg *arg)
{ {
Bar *bar; Bar *bar;
selmon->showbar = !selmon->showbar; selmon->showbar = selmon->pertag->showbars[selmon->pertag->curtag] = !selmon->showbar;
updatebarpos(selmon); updatebarpos(selmon);
for (bar = selmon->bar; bar; bar = bar->next) for (bar = selmon->bar; bar; bar = bar->next)
XMoveResizeWindow(dpy, bar->win, bar->bx, bar->by, bar->bw, bar->bh); XMoveResizeWindow(dpy, bar->win, bar->bx, bar->by, bar->bw, bar->bh);
@ -2077,9 +2116,29 @@ void
toggleview(const Arg *arg) toggleview(const Arg *arg)
{ {
unsigned int newtagset = selmon->tagset[selmon->seltags] ^ (arg->ui & TAGMASK); unsigned int newtagset = selmon->tagset[selmon->seltags] ^ (arg->ui & TAGMASK);
int i;
if (newtagset) { if (newtagset) {
if (newtagset == ~0) {
selmon->pertag->prevtag = selmon->pertag->curtag;
selmon->pertag->curtag = 0;
}
/* test if the user did not select the same tag */
if (!(newtagset & 1 << (selmon->pertag->curtag - 1))) {
selmon->pertag->prevtag = selmon->pertag->curtag;
for (i=0; !(newtagset & 1 << i); i++) ;
selmon->pertag->curtag = i + 1;
}
selmon->tagset[selmon->seltags] = newtagset; selmon->tagset[selmon->seltags] = newtagset;
/* apply settings for this view */
selmon->nmaster = selmon->pertag->nmasters[selmon->pertag->curtag];
selmon->mfact = selmon->pertag->mfacts[selmon->pertag->curtag];
selmon->sellt = selmon->pertag->sellts[selmon->pertag->curtag];
selmon->lt[selmon->sellt] = selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt];
selmon->lt[selmon->sellt^1] = selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt^1];
if (selmon->showbar != selmon->pertag->showbars[selmon->pertag->curtag])
togglebar(NULL);
focus(NULL); focus(NULL);
arrange(selmon); arrange(selmon);
} }
@ -2477,11 +2536,38 @@ updatewmhints(Client *c)
void void
view(const Arg *arg) view(const Arg *arg)
{ {
int i;
unsigned int tmptag;
if ((arg->ui & TAGMASK) == selmon->tagset[selmon->seltags]) if ((arg->ui & TAGMASK) == selmon->tagset[selmon->seltags])
return; return;
selmon->seltags ^= 1; /* toggle sel tagset */ selmon->seltags ^= 1; /* toggle sel tagset */
if (arg->ui & TAGMASK) if (arg->ui & TAGMASK) {
selmon->pertag->prevtag = selmon->pertag->curtag;
selmon->tagset[selmon->seltags] = arg->ui & TAGMASK; selmon->tagset[selmon->seltags] = arg->ui & TAGMASK;
if (arg->ui == ~0)
selmon->pertag->curtag = 0;
else {
for (i=0; !(arg->ui & 1 << i); i++) ;
selmon->pertag->curtag = i + 1;
}
} else {
tmptag = selmon->pertag->prevtag;
selmon->pertag->prevtag = selmon->pertag->curtag;
selmon->pertag->curtag = tmptag;
}
selmon->nmaster = selmon->pertag->nmasters[selmon->pertag->curtag];
selmon->nstack = selmon->pertag->nstacks[selmon->pertag->curtag];
selmon->mfact = selmon->pertag->mfacts[selmon->pertag->curtag];
selmon->sellt = selmon->pertag->sellts[selmon->pertag->curtag];
selmon->lt[selmon->sellt] = selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt];
selmon->lt[selmon->sellt^1] = selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt^1];
selmon->ltaxis[LAYOUT] = selmon->pertag->ltaxis[selmon->pertag->curtag][LAYOUT];
selmon->ltaxis[MASTER] = selmon->pertag->ltaxis[selmon->pertag->curtag][MASTER];
selmon->ltaxis[STACK] = selmon->pertag->ltaxis[selmon->pertag->curtag][STACK];
selmon->ltaxis[STACK2] = selmon->pertag->ltaxis[selmon->pertag->curtag][STACK2];
if (selmon->showbar != selmon->pertag->showbars[selmon->pertag->curtag])
togglebar(NULL);
focus(NULL); focus(NULL);
arrange(selmon); arrange(selmon);
} }

861
libs/lt/tile.c Normal file
View file

@ -0,0 +1,861 @@
typedef struct {
void (*arrange)(Monitor *, int, int, int, int, int, int, int);
} LayoutArranger;
typedef struct {
void (*arrange)(Monitor *, int, int, int, int, int, int, int, int, int);
} TileArranger;
static const LayoutArranger flexlayouts[] = {
{ layout_no_split },
{ layout_split_vertical },
{ layout_split_horizontal },
{ layout_split_centered_vertical },
{ layout_split_centered_horizontal },
{ layout_split_vertical_dual_stack },
{ layout_split_horizontal_dual_stack },
{ layout_floating_master },
{ layout_split_vertical_fixed },
{ layout_split_horizontal_fixed },
{ layout_split_centered_vertical_fixed },
{ layout_split_centered_horizontal_fixed },
{ layout_split_vertical_dual_stack_fixed },
{ layout_split_horizontal_dual_stack_fixed },
{ layout_floating_master_fixed },
};
static const TileArranger flextiles[] = {
{ arrange_top_to_bottom },
{ arrange_left_to_right },
{ arrange_monocle },
{ arrange_gapplessgrid },
{ arrange_gapplessgrid_alt1 },
{ arrange_gapplessgrid_alt2 },
{ arrange_gridmode },
{ arrange_horizgrid },
{ arrange_dwindle },
{ arrange_spiral },
{ arrange_tatami },
};
static void
getfactsforrange(Monitor *m, int an, int ai, int size, int *rest, float *fact)
{
int i;
float facts;
Client *c;
int total = 0;
facts = 0;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++)
if (i >= ai && i < (ai + an))
#if CFACTS_PATCH
facts += c->cfact;
#else
facts += 1;
#endif // CFACTS_PATCH
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++)
if (i >= ai && i < (ai + an))
#if CFACTS_PATCH
total += size * (c->cfact / facts);
#else
total += size / facts;
#endif // CFACTS_PATCH
*rest = size - total;
*fact = facts;
}
static void
layout_no_split(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, n, 0);
}
static void
layout_split_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
layout_split_vertical_fixed(m, x, y, h, w, ih, iv, n);
} else {
layout_no_split(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sw, sx;
sw = (w - iv) * (1 - m->mfact);
w = (w - iv) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sx = x;
x += sw + iv;
} else {
sx = x + w + iv;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, n - m->nmaster, m->nmaster);
}
static void
layout_split_vertical_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_vertical(m, x, y, h, w, ih, iv, n);
} else {
layout_split_vertical_dual_stack_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_vertical_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sw, sx, oy, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sw = (w - iv) * (1 - m->mfact);
sh = (h - ih) / 2;
w = (w - iv) * m->mfact;
oy = y + sh + ih;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sx = x;
x += sw + iv;
} else {
sx = x + w + iv;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, sh, sw, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, sx, oy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_split_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
layout_split_horizontal_fixed(m, x, y, h, w, ih, iv, n);
} else {
layout_no_split(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sy;
sh = (h - ih) * (1 - m->mfact);
h = (h - ih) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sy = y;
y += sh + ih;
} else {
sy = y + h + ih;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, n - m->nmaster, m->nmaster);
}
static void
layout_split_horizontal_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_horizontal(m, x, y, h, w, ih, iv, n);
} else {
layout_split_horizontal_dual_stack_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_horizontal_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sy, ox, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sh = (h - ih) * (1 - m->mfact);
h = (h - ih) * m->mfact;
sw = (w - iv) / 2;
ox = x + sw + iv;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sy = y;
y += sh + ih;
} else {
sy = y + h + ih;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, sw, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, sy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_split_centered_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_vertical(m, x, y, h, w, ih, iv, n);
} else {
layout_split_centered_vertical_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_centered_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sw, sx, ox, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sw = (w - 2*iv) * (1 - m->mfact) / 2;
w = (w - 2*iv) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sx = x;
x += sw + iv;
ox = x + w + iv;
} else {
ox = x;
x += sw + iv;
sx = x + w + iv;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, y, h, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_split_centered_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_horizontal(m, x, y, h, w, ih, iv, n);
} else {
layout_split_centered_horizontal_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_centered_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sy, oy, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sh = (h - 2*ih) * (1 - m->mfact) / 2;
h = (h - 2*ih) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sy = y;
y += sh + ih;
oy = y + h + ih;
} else {
oy = y;
y += sh + ih;
sy = y + h + ih;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, x, oy, sh, w, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_floating_master(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else {
layout_floating_master_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_floating_master_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int mh, mw;
/* Draw stack area first */
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, y, h, w, ih, iv, n, n - m->nmaster, m->nmaster);
if (w > h) {
mw = w * m->mfact;
mh = h * 0.9;
} else {
mw = w * 0.9;
mh = h * m->mfact;
}
x = x + (w - mw) / 2;
y = y + (h - mh) / 2;
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, mh, mw, ih, iv, n, m->nmaster, 0);
}
static void
arrange_left_to_right(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, rest;
float facts, fact = 1;
Client *c;
if (ai + an > n)
an = n - ai;
w -= iv * (an - 1);
getfactsforrange(m, an, ai, w, &rest, &facts);
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
#if CFACTS_PATCH
fact = c->cfact;
#endif // CFACTS_PATCH
resize(c, x, y, w * (fact / facts) + ((i - ai) < rest ? 1 : 0) - (2*c->bw), h - (2*c->bw), 0);
x += WIDTH(c) + iv;
}
}
}
static void
arrange_top_to_bottom(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, rest;
float facts, fact = 1;
Client *c;
if (ai + an > n)
an = n - ai;
h -= ih * (an - 1);
getfactsforrange(m, an, ai, h, &rest, &facts);
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
#if CFACTS_PATCH
fact = c->cfact;
#endif // CFACTS_PATCH
resize(c, x, y, w - (2*c->bw), h * (fact / facts) + ((i - ai) < rest ? 1 : 0) - (2*c->bw), 0);
y += HEIGHT(c) + ih;
}
}
}
static void
arrange_monocle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i;
Client *c;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++)
if (i >= ai && i < (ai + an))
resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0);
}
static void
arrange_gridmode(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, cols, rows, ch, cw, cx, cy, cc, cr, chrest, cwrest; // counters
Client *c;
/* grid dimensions */
for (rows = 0; rows <= an/2; rows++)
if (rows*rows >= an)
break;
cols = (rows && (rows - 1) * rows >= an) ? rows - 1 : rows;
/* window geoms (cell height/width) */
ch = (h - ih * (rows - 1)) / (rows ? rows : 1);
cw = (w - iv * (cols - 1)) / (cols ? cols : 1);
chrest = h - ih * (rows - 1) - ch * rows;
cwrest = w - iv * (cols - 1) - cw * cols;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
cc = ((i - ai) / rows); // client column number
cr = ((i - ai) % rows); // client row number
cx = x + cc * (cw + iv) + MIN(cc, cwrest);
cy = y + cr * (ch + ih) + MIN(cr, chrest);
resize(c, cx, cy, cw + (cc < cwrest ? 1 : 0) - 2*c->bw, ch + (cr < chrest ? 1 : 0) - 2*c->bw, False);
}
}
}
static void
arrange_horizgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int ntop, nbottom, rh, rest;
/* Exception when there is only one client; don't split into two rows */
if (an == 1) {
arrange_monocle(m, x, y, h, w, ih, iv, n, an, ai);
return;
}
ntop = an / 2;
nbottom = an - ntop;
rh = (h - ih) / 2;
rest = h - ih - rh * 2;
arrange_left_to_right(m, x, y, rh + rest, w, ih, iv, n, ntop, ai);
arrange_left_to_right(m, x, y + rh + ih + rest, rh, w, ih, iv, n, nbottom, ai + ntop);
}
static void
arrange_gapplessgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, cols, rows, ch, cw, cn, rn, cc, rrest, crest; // counters
Client *c;
/* grid dimensions */
for (cols = 1; cols <= an/2; cols++)
if (cols*cols >= an)
break;
if (an == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */
cols = 2;
rows = an/cols;
cn = rn = cc = 0; // reset column no, row no, client count
ch = (h - ih * (rows - 1)) / rows;
rrest = (h - ih * (rows - 1)) - ch * rows;
cw = (w - iv * (cols - 1)) / cols;
crest = (w - iv * (cols - 1)) - cw * cols;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
if (cc/rows + 1 > cols - an%cols) {
rows = an/cols + 1;
ch = (h - ih * (rows - 1)) / rows;
rrest = (h - ih * (rows - 1)) - ch * rows;
}
resize(c,
x,
y + rn*(ch + ih) + MIN(rn, rrest),
cw + (cn < crest ? 1 : 0) - 2*c->bw,
ch + (rn < rrest ? 1 : 0) - 2*c->bw,
0);
rn++;
cc++;
if (rn >= rows) {
rn = 0;
x += cw + ih + (cn < crest ? 1 : 0);
cn++;
}
}
}
}
/* This version of gappless grid fills rows first */
static void
arrange_gapplessgrid_alt1(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, cols, rows, rest, ch;
/* grid dimensions */
for (cols = 1; cols <= an/2; cols++)
if (cols*cols >= an)
break;
rows = (cols && (cols - 1) * cols >= an) ? cols - 1 : cols;
ch = (h - ih * (rows - 1)) / (rows ? rows : 1);
rest = (h - ih * (rows - 1)) - ch * rows;
for (i = 0; i < rows; i++) {
arrange_left_to_right(m, x, y, ch + (i < rest ? 1 : 0), w, ih, iv, n, MIN(cols, an - i*cols), ai + i*cols);
y += ch + (i < rest ? 1 : 0) + ih;
}
}
/* This version of gappless grid fills columns first */
static void
arrange_gapplessgrid_alt2(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, cols, rows, rest, cw;
/* grid dimensions */
for (rows = 0; rows <= an/2; rows++)
if (rows*rows >= an)
break;
cols = (rows && (rows - 1) * rows >= an) ? rows - 1 : rows;
cw = (w - iv * (cols - 1)) / (cols ? cols : 1);
rest = (w - iv * (cols - 1)) - cw * cols;
for (i = 0; i < cols; i++) {
arrange_top_to_bottom(m, x, y, h, cw + (i < rest ? 1 : 0), ih, iv, n, MIN(rows, an - i*rows), ai + i*rows);
x += cw + (i < rest ? 1 : 0) + iv;
}
}
static void
arrange_fibonacci(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai, int s)
{
int i, j, nv, hrest = 0, wrest = 0, nx = x, ny = y, nw = w, nh = h, r = 1;
Client *c;
for (i = 0, j = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), j++) {
if (j >= ai && j < (ai + an)) {
if (r) {
if ((i % 2 && ((nh - ih) / 2) <= (bh + 2*c->bw)) || (!(i % 2) && ((nw - iv) / 2) <= (bh + 2*c->bw))) {
r = 0;
}
if (r && i < an - 1) {
if (i % 2) {
nv = (nh - ih) / 2;
hrest = nh - 2*nv - ih;
nh = nv;
} else {
nv = (nw - iv) / 2;
wrest = nw - 2*nv - iv;
nw = nv;
}
if ((i % 4) == 2 && !s)
nx += nw + iv;
else if ((i % 4) == 3 && !s)
ny += nh + ih;
}
if ((i % 4) == 0) {
if (s) {
ny += nh + ih;
nh += hrest;
} else {
nh -= hrest;
ny -= nh + ih;
}
} else if ((i % 4) == 1) {
nx += nw + iv;
nw += wrest;
} else if ((i % 4) == 2) {
ny += nh + ih;
nh += hrest;
if (i < n - 1)
nw += wrest;
} else if ((i % 4) == 3) {
if (s) {
nx += nw + iv;
nw -= wrest;
} else {
nw -= wrest;
nx -= nw + iv;
nh += hrest;
}
}
if (i == 0) {
if (an != 1) {
nw = (w - iv) - (w - iv) * (1 - m->mfact);
wrest = 0;
}
ny = y;
} else if (i == 1)
nw = w - nw - iv;
i++;
}
resize(c, nx, ny, nw - 2 * c->bw, nh - 2*c->bw, False);
}
}
}
static void
arrange_dwindle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 1);
}
static void
arrange_spiral(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 0);
}
static void
arrange_tatami(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
unsigned int i, j, nx, ny, nw, nh, tnx, tny, tnw, tnh, nhrest, hrest, wrest, areas, mats, cats;
Client *c;
nx = x;
ny = y;
nw = w;
nh = h;
mats = an / 5;
cats = an % 5;
hrest = 0;
wrest = 0;
areas = mats + (cats > 0);
nh = (h - ih * (areas - 1)) / areas;
nhrest = (h - ih * (areas - 1)) % areas;
for (i = 0, j = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), j++) {
if (j >= ai && j < (ai + an)) {
tnw = nw;
tnx = nx;
tnh = nh;
tny = ny;
if (j < ai + cats) {
/* Arrange cats (all excess clients that can't be tiled as mats). Cats sleep on mats. */
switch (cats) {
case 1: // fill
break;
case 2: // up and down
if ((i % 5) == 0) //up
tnh = (nh - ih) / 2 + (nh - ih) % 2;
else if ((i % 5) == 1) { //down
tny += (nh - ih) / 2 + (nh - ih) % 2 + ih;
tnh = (nh - ih) / 2;
}
break;
case 3: //bottom, up-left and up-right
if ((i % 5) == 0) { // up-left
tnw = (nw - iv) / 2 + (nw - iv) % 2;
tnh = (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3;
} else if ((i % 5) == 1) { // up-right
tnx += (nw - iv) / 2 + (nw - iv) % 2 + iv;
tnw = (nw - iv) / 2;
tnh = (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3;
} else if ((i % 5) == 2) { //bottom
tnh = (nh - ih) / 3;
tny += (nh - ih) * 2 / 3 + (nh - ih) * 2 % 3 + ih;
}
break;
case 4: // bottom, left, right and top
if ((i % 5) == 0) { //top
hrest = (nh - 2 * ih) % 4;
tnh = (nh - 2 * ih) / 4 + (hrest ? 1 : 0);
} else if ((i % 5) == 1) { // left
tnw = (nw - iv) / 2 + (nw - iv) % 2;
tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + ih;
tnh = (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0);
} else if ((i % 5) == 2) { // right
tnx += (nw - iv) / 2 + (nw - iv) % 2 + iv;
tnw = (nw - iv) / 2;
tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + ih;
tnh = (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0);
} else if ((i % 5) == 3) { // bottom
tny += (nh - 2 * ih) / 4 + (hrest ? 1 : 0) + (nh - 2 * ih) * 2 / 4 + (hrest > 1 ? 1 : 0) + 2 * ih;
tnh = (nh - 2 * ih) / 4 + (hrest > 2 ? 1 : 0);
}
break;
}
} else {
/* Arrange mats. One mat is a collection of five clients arranged tatami style */
if (((i - cats) % 5) == 0) {
if ((cats > 0) || ((i - cats) >= 5)) {
tny = ny = ny + nh + (nhrest > 0 ? 1 : 0) + ih;
--nhrest;
}
}
switch ((i - cats) % 5) {
case 0: // top-left-vert
wrest = (nw - 2 * iv) % 3;
hrest = (nh - 2 * ih) % 3;
tnw = (nw - 2 * iv) / 3 + (wrest ? 1 : 0);
tnh = (nh - 2 * ih) * 2 / 3 + hrest + iv;
break;
case 1: // top-right-hor
tnx += (nw - 2 * iv) / 3 + (wrest ? 1 : 0) + iv;
tnw = (nw - 2 * iv) * 2 / 3 + (wrest > 1 ? 1 : 0) + iv;
tnh = (nh - 2 * ih) / 3 + (hrest ? 1 : 0);
break;
case 2: // center
tnx += (nw - 2 * iv) / 3 + (wrest ? 1 : 0) + iv;
tnw = (nw - 2 * iv) / 3 + (wrest > 1 ? 1 : 0);
tny += (nh - 2 * ih) / 3 + (hrest ? 1 : 0) + ih;
tnh = (nh - 2 * ih) / 3 + (hrest > 1 ? 1 : 0);
break;
case 3: // bottom-right-vert
tnx += (nw - 2 * iv) * 2 / 3 + wrest + 2 * iv;
tnw = (nw - 2 * iv) / 3;
tny += (nh - 2 * ih) / 3 + (hrest ? 1 : 0) + ih;
tnh = (nh - 2 * ih) * 2 / 3 + hrest + iv;
break;
case 4: // (oldest) bottom-left-hor
tnw = (nw - 2 * iv) * 2 / 3 + wrest + iv;
tny += (nh - 2 * ih) * 2 / 3 + hrest + 2 * iv;
tnh = (nh - 2 * ih) / 3;
break;
}
}
resize(c, tnx, tny, tnw - 2 * c->bw, tnh - 2 * c->bw, False);
++i;
}
}
}
static void
flextile(Monitor *m)
{
unsigned int n;
int oh = 0, ov = 0, ih = 0, iv = 0; // gaps outer/inner horizontal/vertical
#if VANITYGAPS_PATCH
getgaps(m, &oh, &ov, &ih, &iv, &n);
#else
Client *c;
for (n = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), n++);
#endif // VANITYGAPS_PATCH
if (m->lt[m->sellt]->preset.layout != m->ltaxis[LAYOUT] ||
m->lt[m->sellt]->preset.masteraxis != m->ltaxis[MASTER] ||
m->lt[m->sellt]->preset.stack1axis != m->ltaxis[STACK] ||
m->lt[m->sellt]->preset.stack2axis != m->ltaxis[STACK2])
setflexsymbols(m, n);
else if (m->lt[m->sellt]->preset.symbolfunc != NULL)
m->lt[m->sellt]->preset.symbolfunc(m, n);
if (n == 0)
return;
#if VANITYGAPS_PATCH && !VANITYGAPS_MONOCLE_PATCH
/* No outer gap if full screen monocle */
if (abs(m->ltaxis[MASTER]) == MONOCLE && (abs(m->ltaxis[LAYOUT]) == NO_SPLIT || n <= m->nmaster)) {
oh = 0;
ov = 0;
}
#endif // VANITYGAPS_PATCH && !VANITYGAPS_MONOCLE_PATCH
(&flexlayouts[abs(m->ltaxis[LAYOUT])])->arrange(m, m->wx + ov, m->wy + oh, m->wh - 2*oh, m->ww - 2*ov, ih, iv, n);
return;
}
static void
setflexsymbols(Monitor *m, unsigned int n)
{
int l;
char sym1, sym2, sym3;
Client *c;
if (n == 0)
for (c = nexttiled(m->clients); c; c = nexttiled(c->next), n++);
l = abs(m->ltaxis[LAYOUT]);
if (m->ltaxis[MASTER] == MONOCLE && (l == NO_SPLIT || !m->nmaster || n <= m->nmaster)) {
monoclesymbols(m, n);
return;
}
if (m->ltaxis[STACK] == MONOCLE && (l == SPLIT_VERTICAL || l == SPLIT_HORIZONTAL_FIXED)) {
decksymbols(m, n);
return;
}
/* Layout symbols */
if (l == NO_SPLIT || !m->nmaster) {
sym1 = sym2 = sym3 = (int)tilesymb[m->ltaxis[MASTER]];
} else {
sym2 = layoutsymb[l];
if (m->ltaxis[LAYOUT] < 0) {
sym1 = tilesymb[m->ltaxis[STACK]];
sym3 = tilesymb[m->ltaxis[MASTER]];
} else {
sym1 = tilesymb[m->ltaxis[MASTER]];
sym3 = tilesymb[m->ltaxis[STACK]];
}
}
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym1, sym2, sym3);
}
static void
monoclesymbols(Monitor *m, unsigned int n)
{
if (n > 0)
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[%d]", n);
else
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[M]");
}
static void
decksymbols(Monitor *m, unsigned int n)
{
if (n > m->nmaster)
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[]%d", n);
else
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[D]");
}
/* Mirror layout axis for flextile */
void
mirrorlayout(const Arg *arg)
{
if (!selmon->lt[selmon->sellt]->arrange)
return;
selmon->ltaxis[LAYOUT] *= -1;
selmon->pertag->ltaxis[selmon->pertag->curtag][0] = selmon->ltaxis[LAYOUT];
arrange(selmon);
}
/* Rotate layout axis for flextile */
void
rotatelayoutaxis(const Arg *arg)
{
int incr = (arg->i > 0 ? 1 : -1);
int axis = abs(arg->i) - 1;
if (!selmon->lt[selmon->sellt]->arrange)
return;
if (axis == LAYOUT) {
if (selmon->ltaxis[LAYOUT] >= 0) {
selmon->ltaxis[LAYOUT] += incr;
if (selmon->ltaxis[LAYOUT] >= LAYOUT_LAST)
selmon->ltaxis[LAYOUT] = 0;
else if (selmon->ltaxis[LAYOUT] < 0)
selmon->ltaxis[LAYOUT] = LAYOUT_LAST - 1;
} else {
selmon->ltaxis[LAYOUT] -= incr;
if (selmon->ltaxis[LAYOUT] <= -LAYOUT_LAST)
selmon->ltaxis[LAYOUT] = 0;
else if (selmon->ltaxis[LAYOUT] > 0)
selmon->ltaxis[LAYOUT] = -LAYOUT_LAST + 1;
}
} else {
selmon->ltaxis[axis] += incr;
if (selmon->ltaxis[axis] >= AXIS_LAST)
selmon->ltaxis[axis] = 0;
else if (selmon->ltaxis[axis] < 0)
selmon->ltaxis[axis] = AXIS_LAST - 1;
}
selmon->pertag->ltaxis[selmon->pertag->curtag][axis] = selmon->ltaxis[axis];
arrange(selmon);
setflexsymbols(selmon, 0);
}
void
incnstack(const Arg *arg)
{
selmon->nstack = selmon->pertag->nstacks[selmon->pertag->curtag] = MAX(selmon->nstack + arg->i, 0);
arrange(selmon);
}

116
libs/lt/tile.h Normal file
View file

@ -0,0 +1,116 @@
static void flextile(Monitor *m);
static void mirrorlayout(const Arg *arg);
static void rotatelayoutaxis(const Arg *arg);
static void incnstack(const Arg *arg);
/* Symbol handlers */
static void setflexsymbols(Monitor *m, unsigned int n);
static void monoclesymbols(Monitor *m, unsigned int n);
static void decksymbols(Monitor *m, unsigned int n);
/* Layout split */
static void layout_no_split(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_floating_master(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_floating_master_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
/* Layout tile arrangements */
static void arrange_left_to_right(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_top_to_bottom(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_monocle(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_gapplessgrid(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_gapplessgrid_alt1(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_gapplessgrid_alt2(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_gridmode(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_horizgrid(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_dwindle(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_spiral(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_tatami(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
/* Named flextile constants */
enum {
LAYOUT, // controls overall layout arrangement / split
MASTER, // indicates the tile arrangement for the master area
STACK, // indicates the tile arrangement for the stack area
STACK2, // indicates the tile arrangement for the secondary stack area
LTAXIS_LAST,
};
/* Layout arrangements */
enum {
NO_SPLIT,
SPLIT_VERTICAL, // master stack vertical split
SPLIT_HORIZONTAL, // master stack horizontal split
SPLIT_CENTERED_VERTICAL, // centered master vertical split
SPLIT_CENTERED_HORIZONTAL, // centered master horizontal split
SPLIT_VERTICAL_DUAL_STACK, // master stack vertical split with dual stack
SPLIT_HORIZONTAL_DUAL_STACK, // master stack vertical split with dual stack
FLOATING_MASTER, // (fake) floating master
SPLIT_VERTICAL_FIXED, // master stack vertical fixed split
SPLIT_HORIZONTAL_FIXED, // master stack horizontal fixed split
SPLIT_CENTERED_VERTICAL_FIXED, // centered master vertical fixed split
SPLIT_CENTERED_HORIZONTAL_FIXED, // centered master horizontal fixed split
SPLIT_VERTICAL_DUAL_STACK_FIXED, // master stack vertical split with fixed dual stack
SPLIT_HORIZONTAL_DUAL_STACK_FIXED, // master stack vertical split with fixed dual stack
FLOATING_MASTER_FIXED, // (fake) fixed floating master
LAYOUT_LAST,
};
static char layoutsymb[] = {
32, // " ",
124, // "|",
61, // "=",
94, // "^",
126, // "~",
58, // ":",
59, // ";",
43, // "+",
124, // "¦",
61, // "=",
94, // "^",
126, // "~",
58, // ":",
59, // ";",
43, // "+",
};
/* Tile arrangements */
enum {
TOP_TO_BOTTOM, // clients are arranged vertically
LEFT_TO_RIGHT, // clients are arranged horizontally
MONOCLE, // clients are arranged in deck / monocle mode
GAPPLESSGRID, // clients are arranged in a gappless grid (original formula)
GAPPLESSGRID_ALT1, // clients are arranged in a gappless grid (alt. 1, fills rows first)
GAPPLESSGRID_ALT2, // clients are arranged in a gappless grid (alt. 2, fills columns first)
GRIDMODE, // clients are arranged in a grid
HORIZGRID, // clients are arranged in a horizontal grid
DWINDLE, // clients are arranged in fibonacci dwindle mode
SPIRAL, // clients are arranged in fibonacci spiral mode
TATAMI, // clients are arranged as tatami mats
AXIS_LAST,
};
static char tilesymb[] = {
61, // "=",
124, // "|",
68, // "D",
71, // "G",
49, // "1",
50, // "2"
35, // "#",
126, // "~",
92, // "\\",
64, // "@",
84, // "T",
};